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Pulsed ultrasonic techniques can be and
have been used to examine the interface
conditions of a bonded structure. To provide
a theoretical basis for such testing tech-
niques we model the structure as a layer on
top of a half-space, both of different
elastic properties, with various interface
bonding conditions. The exact dynamic
Green’s tensor for such a structure is ex-
plicitly derived from the three-dimen-
sional equations of motion. The final solu-
tion is a series. Each term of the series
corresponds to a successive arrival of a
“generalized ray” and each is a definite
line integral along a fixed path which can
be easily computed numerically. Willis’
method is used in the derivation. A new
scheme of automatic generation of the
arrivals and ray paths using combinatorial
analysis, along with the summation of the
corresponding products of reflection coeffi-
cients is presented. A FORTRAN code is
developed for computation of the Green’s
tensor when both the source and the de-
tector are located on the top surface. The

Green’s tensor is then used to simulate
displacements due to pulsed ultrasonic
point sources of known time waveform.
Results show that the interface bonding
conditions have a great influence on the
transient displacements. For example, when
the interface bonding conditions vary,
some of the first few head waves and regu-
lar reflected rays change polarities and
amplitudes. This phenomenon can be used
to infer the quality of the interface bond
of materials in ultrasonic nondestructive
evaluation. In addition the results are
useful in the study of acoustic microscopy
probes, coatings, and geo-exploration.
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1. Introduction

The dynamic Green’s tensor of a structure is the fun-
damental solution to the transient mechanical wave
problem of the structure. The theoretical prediction of
the behavior of transient waves for arbitrary extended
source distributions in space and time can be obtained
once the time-domain dynamic Green’s tensor is known.
The ability to predict the behavior of transient waves in
a structure is important in the development and under-
standing of nondestructive evaluation techniques using

1 Deceased; was on leave from Institute of Acoustics, Academia
Sinica, Beijing, People’s Republic of China.

ultrasonics or acoustic emission and in other problems
of wave propagation in solid and liquid media.

In recent years, the “generalized ray” expansion tech-
nique has been applied to compute the Green’s tensor in
a solid half-space or a solid infinite plate. The governing
differential equation of motion is transferred to the
Fourier or Laplace domain and the solution in the form
of a series is obtained algebraically. Basically, there are
two methods to invert the series from the transformed
domain to the time-space domain. One is the well
known Cagniard-de Hoop inversion method [1]; the
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other is a method developed by Willis in 1973 [2].
Willis’ method uses the Fourier transform and expresses
the resulting transform as a series of “generalized rays”
and then inverts the series term by term. For three-di-
mensional problems, as in the Cagniard-de Hoop
method, only one integration remains. The integration
path is always around a unit circle and is therefore
“fixed” to some extent, but explicit evaluation of the
integrand requires the numerical solution of an algebraic
equation for each integration variable. Application of the
Cagniard-de Hoop method requires a detailed discus-
sion of the structure of a moderately complicated alge-
braic function accompanying the transform of the inte-
gration path. However, the integration path of the Willis
inversion method is “fixed” and succeeds in avoiding the
explicit discussion of the structure of the algebraic func-
tion and so is applied rather easily even in the an-
isotropic case. This is the main advantage of the Willis
inversion method. The basis for carrying out the Willis
inversion is that the solutions of elastodynamic problems
are homogeneous functions of time, t , and position, x ;
that is, the problems are self-similar [2]. In addition, the
displacements rather than the potentials are used, so the
derivations are simplified, and the derivatives of the
Green’s tensor about spatial coordinates are easily ob-
tained as well. These derivatives can be interpreted as
the displacements due to dipole sources. The three-di-
mensional transient Green’s tensor for an isotropic plate
and the two-dimensional transient Green’s tensor for an
anisotropic layer on an isotropic half-space were solved
using Willis’ inversion method [3,4].

In this paper formulae are derived for computing the
three-dimensional transient Green’s tensor for an
isotropic layer overlay on an isotropic half-space. To
understand the influence of the interface bonding condi-
tion on the behavior of transient waves, a welded inter-
face, a liquid coupled interface, and a “vacuum” inter-
face are considered. The results for the case of the liquid
coupled interface are obtained by artificially casting the
boundary conditions into a matrix form similar to that
for the case of the welded interface. The results for the
“vacuum” interface are obtained by considering the
layer with no half-space. The last case has been com-
puted and experimentally confirmed previously, thus it
can be checked with independent results.

There are many rays which arrive at the observation
point (detector) at the same time owing to the multiple
reflection and the mode conversion of the incident P
(longitudinal) ray or S (shear) ray emitted from the force
source in the layer. These rays are kinematically equiva-
lent and are called “kinematic analogs”. Obviously, it is
not necessary to separately compute the contribution of
each ray to the integration. The question of how many
kinematically equivalent rays arrive at the detector at the

same time for a given configuration is a problem of
combinatorics. It is quite a complicated problem for a
multiple layered solid half-space. So in this paper we
present a new counting method to deal with this prob-
lem. In addition, some new numerical treatments are
developed: 1) Automatic generation of the travel paths
and the arrival times of various rays, 2) Automatic gen-
eration of the products of the reflection coefficients, and
3) An integration method for head wave rays.

The conditions for producing various head waves, sur-
face waves, and interface waves are also examined.
These conditions are determined from different singu-
larities in the integrand.

A FORTRAN program has been developed for nu-
merical computations of the response for any choice of
materials for the layer and substrate. The computed re-
sults for the case of a plexiglass layer and glass substrate
show that changes of the interface bonding condition
have a great influence on the behavior of transient waves
when both the source and detector are located on the top
surface of the layer. For example, some of the first few
head waves and regular reflected rays change their po-
larities and amplitudes when the interface bonding con-
ditions change. This phenomenon can be used to infer
the quality of the interface bonding of materials in ultra-
sonic nondestructive evaluation. In addition, results
from this fundamental solution are expected to provide
insight into the study and optimization of probing tools
such as acoustic microscopes and in applications rang-
ing from the study of coatings to geo-exploration.

2. Governing Equations and Boundary
Conditions

Consider an elastic structure consisting of an an-
isotropic homogeneous layer of thickness 2h on a homo-
geneous half-space as shown in Fig. 1 and suppose there
is a point force source of step function time dependence
inside the layer. Then the fields in the layer satisfy the
equations of motion

Fig. 1. Schematic representation of a layered half-space.
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� I
ij

xj
+ fi� (x1)� (x2)� (x3 � z )H (t ) = � I 2u I

i

t 2 ,

� h < x3 < h (1.1)

where (0, 0, z ) are the position coordinates of the
source. The origin of the Cartesian coordinates is at the
center of the top layer; u I

i , � I
ij , and � I are the displace-

ment components, the stress components, and the den-
sity of layer I , respectively; fi , H (t ), and � (x ) are the
components of the point force source, Heaviside step
function, and Dirac delta function, respectively. The
summation convention is used.

The stress and displacement gradient in the layer are
related by the generalized Hooke’s law

�ij
I = c I

ijk�
 u I

k

 x�
(1.2)

where c I
ijk� are the elastic constants in the layer.

Similarly, the field equations and stress and displace-
ment gradient relation in the lower half-space can be
written by replacing “I” with “II”, thus

 �ij
II

 xj
= � II 2ui

II

 t 2 , x3 < �h. (1.3)

where � II
ij , u II

i , and � II are the stress components, the
displacement components, and the density in the half-
space.

The stress and displacement gradient in the half-space
are related by

�ij
II = c II

ijk�
 u II

k

 x�
, (1.4)

where cII
ijk� are the elastic constants in the half-space.

In addition, the solution should also satisfy the follow-
ing conditions:

uk
I = uk

II = 0, t < 0,
(1.5)

�ij
I = �ij

II = 0, t < 0,

and

uk
II = 0, x3 → ��. (1.6)

In what follows we consider two cases of the interface
bonding condition, whereas the top surface boundary
conditions remain the same.

Case 1.

Suppose the interface is “welded”, whereas the top
surface condition is traction free; we have:

�i3
I = 0, x3 = h , (1.7)

�i3
I = � II

i3, x3 = �h , (1.8)

ui
I = ui

II, x3 = �h . (1.9)

Case 2.

Suppose the interface is intimately “liquid” coupled,
while the top surface condition is again traction free. We
have:

�i3 = 0, x3 = h , (1.10)

� I
33 = � II

33, x3 = �h , (1.11)

� I
13 = � I

23 = 0, x3 = �h , (1.12)

� II
13 = � II

23 = 0, x3 = �h , (1.13)

u I
3 = u II

3 , x3 = h . (1.14)

3. Solution Method

The outline of the solution procedure for the problem
can be described as follows. First, introduce the Green’s
tensor and take its Fourier transform in time and space;
then, expand the transformed Green’s tensor according
to the eigenvector of the Christoffel matrix, and decom-
pose the fields into downgoing waves and upgoing
waves; third, use boundary conditions to iteratively get
the solution in the transform domain in a form of
“generalized ray” series; finally, use the Willis inversion
technique to get the solution.

Defining the “Heaviside Green’s tensor”, Gij , the dis-
placements in the layer can be expressed as

u I
i = Gij fj . (1.15)

Substituting Eqs. (1.2) and (1.15) into Eq. (1.1) gives

c I
ijk�

2Gkp

xj x1
+ �ip� (x1)� (x2)� (x3 � z )H (t ) = � I 2Gip

dt 2 ,

(1.16)

where �ip is the Kronecker delta.
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The Green’s tensor in the layer may also be expressed
as

G = G� + G I, (1.17)

where G� is the infinite body Heaviside Green’s tensor
and G I is the “image” tensor in the layer formed from
the waves reflected on the boundaries x3 = �h . All ma-
trices are denoted in bold capitals and vectors in bold
small letters.

Define matrices KL(� ,� ) and CL(� ) with components

KL
ik (� , x ) = �L� 2�ik � cL

ijk��j�1, (1.18)

CL
ik (x ) = cL

i3k��� , (1.19)

L = I, II,

where the vector � = (�1, �2, �3).
In terms of Eqs. (1.15)-(1.19), we obtain the equa-

tions involving G� and G I which satisfy

K I�
t

, ��G� = I� (x1)� (x2)� (x3 � z )H (t ), (1.20)

and

K I�
t

, ��G I = 0, (1.21)

where I is the identity matrix. The Green’s tensor, G II,
in the half-space satisfies

K II�
t

, ��G II = 0. (1.22)

And the boundary conditions corresponding to cases 1
and 2 become:

Case 1.

C I(�)(G� + G I) = 0, x3 = h , (1.23)

C I(�)(G� + G I) = C II(�)G II, x3 = �h , (1.24)

G� + G I = G II, x3 = �h , (1.25)

where C I(�) and C II(�) are the matrix operators with
components

CL
ik (�) = cL

i3k�


x�
, L = I, II. (1.26)

Case 2.

C I(�)(G� + G I) = 0, x3 = h , (1.27)

I1C I(�)(G� + G I) = I1C II(�)G I = 0, x3 = �h , (1.28)

I2C I(�)(G� + G I) = I2C II(�)G I = 0, x3 = �h , (1.29)

I3C I(�)(G� + G I) = I3C II(�)G I, x3 = �h , (1.30)

I3(G� + G I) = I3G II, x3 = �h , (1.31)

where

1 0 0
I1 = �0 0 0�, (1.32)

0 0 0

0 0 0
I2 = �0 1 0�, (1.33)

0 0 0

and

0 0 0
I3 = �0 0 0�, (1.34)

0 0 1

4. Ray Expansion

We follow the method developed in Refs. [2,3,4], but
provide only an outline here. Defining the Fourier trans-
form of G� by

Ĝ�(� ,� )=�
�

0

dt��
�

��

�dx1dx2dx3G�(t , x )exp[i(� x � �t )],

(2.1)

from Eq. (1.20) we then get

K I(� , � )Ĝ�(� , � ) =
�i
�

Iexp(i�3 z ), (2.2)

where � is taken to have negative imaginary parts while
� = (�1, �2, �3) has real components. It is easily shown
that Ĝ� is an analytic function of � in the lower half of
the � -plane, and its inverse transform as a function of
time t is equal to zero when t < 0.

In order to express the inverse of the matrix K I(� , � )
in terms of its eigenvectors, we consider the Christoffel
equation

K I(� , � )ur = �r(� , � )ur, (2.3)
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where �r(� , � ) and ur are the eigenvalues and eigenvec-
tors.

For given real � , �1, and �2, the equation

det K I(� , � ) = 0 (2.4)

has six roots �3 = �3
N(� , �� ), N = �1, 2, 3, � = 1, 2,

which may either be real or occur in complex conjugate
pairs. By means of the concept of Riemann surfaces, the
six roots may be considered to define a single-valued
algebraic function �3(� , �� ) by Eq. (2.4), if � is allowed
to range over the six sheets of its Riemann surface [2].
It can be shown by analytic continuation that when
Im (� ) < 0, the algebraic function �3 has positive imagi-
nary parts on the three sheets of N = �1, �2, �3 and
has negative imaginary parts on the other three sheets of
N = +1, +2, +3.

Now let us consider the eigenvalues. Since �N =
� I(� 2 � �N

2), where �N is inverse to �3
N(� , �� ), let

�3
N(�N , �� ) or detK I(�N, � ) = 0, and we obtain the six

roots ��N , N = 1, 2, 3 and therefore the three eigenval-
ues �N .

Normalizing the eigenvectors so that um un
T = �mn , we

have

I = �ur uT
r = UUT (2.5)

where the matrix U consists of the three column vectors
ur, while UT is the transpose of U . As a result we have

Ĝ�(� , � ) = �
i
� �3

r=1

��1
r uruT

r exp(i�3 z ). (2.6)

Using symmetry with respect to the x3 axis, and tak-
ing the Fourier transform of G I from (t , x1, x2, x3) to (� ,
�1, �2, x3) we obtain for the fields in the layer

Ĝ (� , � ) = �
�

0

dt��
�

��

dx1dx2G I(t , x )exp[i(�� x� � �t )],

(2.7)

where

�� x� = �1 x1 + �2 x2. (2.8)

In what follows we consider the cases of downgoing
waves and upgoing waves in the layer respectively.

1. Downgoing waves.

Consider the case x3 < z . Here z is the position of the
point force source. Taking the inverse Fourier transform
of Eq. (2.6) about �3 gives

Ḡ�(� , �1, �2, x3)

=
�i

2�� �
�

��

d�3�3

r=1

��1
r uruT

r exp[�i�3(x3 � z )]. (2.9)

When x3 < z , x3 � z is negative. Then the integral can be
evaluated by closing the contour in the upper half of the
�3-plane and by using Cauchy’s residue theorem. This
gives

Ḡ�(� , �1, �2, x3)

=
1
� �3

M=1

u�
M u�T

M exp[�i�M�
3 (x3 � z )]

�� (� , � )
�3

�
� 3=� M�

3

(2.10)

where �3
M� = �3

M�(� , �1, �2) above, which are located in
the upper half of the �3-plane when Im (� ) < 0. The
subscript or superscript “�” denotes downgoing waves.

2. Upgoing waves.

In the case x3 > z , the contour of integral Eq. (2.9) can
be closed in the lower half-plane. Similarly we obtain

Ḡ�
+ (� , �1, �2, x3) =

1
� �3

N=1

u+
N u+T

N exp[�i�N+
3 (x3 � z )]

�� (� , � )
�3

�
� 3=� N+

3

,

(2.11)

where �3
N+ = �3

N+(� , �1, �2) are the three roots of Eq.
(2.4) which are located in the lower half of the �3-plane,
when Im (� ) < 0. The subscript or superscript “+” de-
notes upgoing waves.

The general solution of Ḡ�(� , �1, �2, x3) should in-
clude three downgoing plane waves and three upgoing
plane waves. The reflected waves in the layer should also
include the downgoing waves and the upgoing waves,
but there exist only the downgoing waves in the lower
half-space. Then we respectively obtain

Ḡ�(� , �1, �2, x3) = Ḡ�
�(� , �1, �2, x3) + Ḡ�

+ (� , �1, �2, x3),
(2.12)

Ḡ I = �3

M=1

u�
M v�T

M exp[�i�M�
3 (x3 � h )]

+ �3

N=1

u+
N v+

N exp[�i�N+
3 (x3 � h )], �h < x3 < h , (2.13)

Ḡ II = �3

P=1

q�
P w�T

P exp[�i�P�
3 (x3 � h )], x3 < �h , (2.14)

where q�
P represents the eigenvectors of an infinite
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body in the lower half-space while �P�
3 represent the

roots of Eq. (2.4) when the superscript “I” is replaced by
“II”, for the same reasoning as mentioned above, which
roots locate on the upper half-plane of �3-plane when
Im (� ) < 0, and v�

M , v+
N , and w�

P are the coefficients to
be determined.

Further matrix notation is introduced as follows,

U� = [u�
1 , u�

2 , u�
3 ], (2.15)

V� = [v�
1 , v�

2 , v�
3 ], (2.16)

with corresponding definitions when superscript “�” is
replaced by “+” and

Q� = [q�
1 , q�

2 , q�
3 ], (2.17)

W� = [w�
1 , w�

2 , w�
3 ], (2.18)

Then the previous equations can be written in more
compact form as

Ḡ�(� , �1, �2, x3) = H (z � x3)U�P�(z � x3 � h )D�U�T

(2.19)
+ H (x3 � z )U+P+(z � x3 + h )D+U+T,

where P�, P+, D�, and D+ are diagonal matrices with
components

(P�)�
k (x3) = � �

k exp[i� ��
3 (x3 + h )], (2.20)

where � �
k is the Kronicker delta. Also,

(P+)�
k (x3) = � �

k exp[i� �+
3 (x3 � h )], (2.21)

(D�)�
k = � �

k	��� (� , � )
�3

�
� 3=� ��

3

��1

, (2.22)

(D+)�
k = � �

k	��� (� , � )
�3

�
� 3=� �+

3

��1

, (2.23)

and

Ḡ I = U�P�(�x3)V�T + U+P+(�x3)V+T, (2.24)

Ḡ II = Q�S�(�x3)W�T, (2.25)

where S� is the diagonal matrix with components

(S�)�
k (x3) = � �

k exp[i� ��
3 (x3 � h )]. (2.26)

Case 1.

If we are only interested in the fields in the layer,
substituting Eqs. (2.19), (2.24), and (2.25) into the
Fourier transformed equations corresponding to the
boundary conditions Eqs. (1.23)-(1.25) and eliminating
the coefficient matrix W�, we get

B�
1 V�T � B+

1P+V+T = � B+
1P+(z )D+U+T (2.27)

and

B+
2V+T � B�

2 P�V�T = � B�
2 P�(z )D�U�T (2.28)

where

B+
1 = C I(� )U+, (2.29)

B+
2 = [C I(� ) � C II(� )Q�(Q�)�1]U+, (2.30)

B�
1 = C I(� )U�, (2.31)

B�
2 = [C I(� ) � C II(� )Q�(Q�)�1]U�, (2.32)

P+ = �P+(�h ), (2.33)

P� = �P�(h ). (2.34)

As h approaches infinity the exponential functions P+

and P� on the left-hand sides of Eqs. (2.27) and (2.28)
approach zero because the exponential factors have neg-
ative and positive imaginary parts, respectively. There-
fore, Eqs. (2.27) and (2.28) uncouple into two indepen-
dent equations and the problem becomes two separate
problems for half-spaces x3 < h and x3 > �h . In addi-
tion, the larger Im (� ) becomes the smaller exponential
functions P+ and P�, and so the equations can be solved
iteratively to give a uniformly convergent series of
“generalized rays” for given �1, �2, and the real part of � .
Finding V�T and V+T from Eqs. (2.27) and (2.28) by
means of an iteration technique similar to Ref. [5] and
substituting the results obtained into the previous rele-
vant equations we get the general field in the layer

Ḡ = Ḡ� + Ḡ+, (2.35)

where

Ḡ� = H (z � x3)U�P�(z � x3 � h )S�

� U�P�(�x3)R+P+(z )S+ � U�P�(�x3)R+P+R�P�(z )S�

� U�P�(�x3)R+P+R�P�R+P+(z )S+ � ... (2.36)
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and

Ḡ+ = H (x3 � z )U+P+(z � x3 + h )S+

� U+P+(�x3)R�P�(z )S� � U+P+(�x3)R�P�R+P+(z )S+

� U+P+(�x3)R�P�R+P+R�P�(z )S� � ... (2.37)

which are the downgoing waves and the upgoing waves
in the layer, respectively. Their physical meanings are
obvious. If we notice that R+ and R� are respectively the
matrices of the reflection coefficients at the top surface
and the lower surface of the layer, and the diagonal
matrices P+ and P� represent phase delays, then the first
term of Eq. (2.36) represents the downgoing direct rays
from the source to the observation point (detector), the
second term describes the rays which reflect once at the
top surface of the layer and so on. Similarly, we can
explain each term of Eq. (2.37). Using the concept of an
infinite linear array of image sources, then, with the
exception of the first (direct wave) term, all the other
terms of Eqs. (2.36) or (2.37) can be considered to be
produced from the corresponding image sources located
above or below the layer. The definitions of the notation
of Eqs. (2.36) and (2.37) are as follows:

L�
1 = (B�

1 )�1, L+
2 = (B+

2)�1, (2.38)

R� = L+
2B�

2 , R+ = L�
1 B+

1, (2.39)

S� = D�U�T, S+ = D+U+T. (2.40)

A typical term of Eq. (2.36) except for the first term
may be written as

U�P�(�x3)R+P+R�P�...R (�1)k
P (�1)k

(z )S (�1)k
, (2.41)

where k counts the number of P ’s, R ’s or S ’s in the term.
Interchanging superscripts “+” and “�” in Eq. (2.41)
gives the typical term of Eq. (2.37).

Suppose an element of the matrix of a typical term of
Eq. (2.41) is written in the form

F (� , � )exp[�i(�� x� � �t + �1�
M
3 + �2�

N
3 )].

Then the inverse Fourier transform of Eq. (2.36) gives

(G�)ml 1
8�3 ���0i

���0i

d���d�1d�2�F (� , � )

exp[�i(�� x� � �t + �1�
M
3 + �2�

N
3 )], (2.42)

where (G�)ml is the element of the matrix G� and F (� ,
� ) is a homogeneous function of degree �2, because the

elements of the matrices U� and R� are homogeneous
functions of degree zero, while the elements of the ma-
trices S� are homogeneous functions of degree �2. In
addition, since the series of “generalized rays” is uni-
formly convergent, we can invert the integration term by
term using the Willis inversion method (Appendix A) to
obtain

(G�)m� =
�1
4�2 � � ds

F (�, 	� )
�t + �1�

M
3,� + �2�

N
3,�

, (2.43)

|h|=1
�=0

where (G�)m� is the element of G�, while the subscript
� denotes /� and

� =
�
|� |

, 	� =
��

|� |
. (2.44)

� in the integrand is now taken as the root in the lower
half-plane of the equation

��t + 	� x� + �1�
M
3 (�, 	� ) + �2�

N
3 (�, 	� ) = 
 i, (2.45)

where 
 is an arbitrary infinitesimal number.
For the elements of G+, we have similar results.

Case 2.

In this case, substituting Eqs. (2.19), (2.24), and
(2.25) into the Fourier transformed equations corre-
sponding to the boundary conditions Eqs. (1.27)-(1.29),
we get the same Eqs. (2.27) and (2.28) when B+

2 and B�
2

are replaced by B*+
2 and B*�

2, respectively, and

B *� = {C I(� ) � (I3C II(� )Q�)

[(I1 + I2)C II(� )Q� + I3Q�]�1}U�. (2.46)

Defining

L *+
2 = (B *+

2 )�1, (2.47)

R *� = L *+
2 B *�

2 , (2.48)

and using the matrices with “*” instead of the corre-
sponding matrices without “*” in Eqs. (2.35)-(2.36), we
immediately obtain the solution of case 2. The inversion
of the transform is the same.

Up to now we have not considered the properties of
the materials, so all the previous results can be applied
to the general case of arbitrary anisotropic materials.
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5. Special Case of Isotropic Materials

When the layer and the lower half-space consist of
two different isotropic materials, then the components
of KL(� , � ) become

KL
ik (� , � )

= (�L� 2 � �L�j�j )�ik � (�L + �L)�i�k , L = I, II. (3.1)

where �L and �L are Lame’s elastic constants of the
materials in the layer (L = I) and the lower half-space
(L = II).

The roots of the equations

det KL(� , � ) = 0, L = I, II (3.2)

are

��aL
3 = �pL (once), (3.3)

��cL
3 = �qL (twice), (3.4)

where

pL = i�� 2 �
� 2

a 2
L
�1/2

, L = I, II, (3.5)

qL = i�� 2 �
� 2

c 2
L
�1/2

, L = I, II, (3.6)

a 2
L = (�L + �L)/�L, L = I, II, (3.7)

c 2
L = �L/�L, L = I, II, (3.8)

� 2 = � 2
1 + � 2

2 . (3.9)

Making a comparison with the previous sections gives

�M�
3 = pI, qI, qI

(3.10)
�N+

3 = �pI, �qI, �qI.

Three roots, pI, qI, and qI, of the six roots in Eq. (3.10)
are in the upper half of the � -plane, whereas the other
three roots, �pI, �qI, and �qI, are in the lower half of
the �3-plane. For the details of the distribution of these
roots, refer to Ref. [2]

The normalized eigenvectors corresponding to the
roots of Eq. (3.10) are

�1

u�
1 =��2 �(� 2 + (pI)2)�1/2, (3.11)

�pI

��1qI

u�
2 =���2qI�(� 2 + (qI)2)�1/2 ��1, (3.12)

�� 2

and

��2�
�1

u�
3 =� �1�

�1 �. (3.13)
0

For the lower half-space there exist only the downgoing
waves; the following three roots should be chosen as

�P�
3 = pII, qII, qII. (3.14)

The corresponding eigenvectors are

�1

q�
1 = � �2 �[� 2 + (pII)2]�1/2, (3.15)

pII

�1qII

q�
2 = ��2qII�[� 2 + (qII)2]�1/2/� , (3.16)

�� 2

and

��2�
�1

q�
3 = � �1�

�1 �. (3.17)
0

The matrix operators C I(� ) and C II(� ) should always
operate on the respective regions of eigenvectors first to
obtain the proper stress components. We have

�2�I pI�1


p 2
I + � 2

�I(q 2
I � � 2)�1


q 2
I + � 2 � �

�
�IqI�2

�

C I(� )U�=��2�I pI�2


p 2
I + � 2

�I(q 2
I � � 2)�2


q 2
I + � 2 � �

�
�IqI�1

� �,

�I(q 2
I � � 2)


p 2
I + � 2

�
2�IqI�

2


q 2
I + � 2 � �

0

(3.18)

�2�II pII�1


p 2
II + � 2

�II(q 2
II � � 2)�1


q 2
II + � 2 � �

�
�IIqII�2

�

C II(� )U�=��2�II pII�2


p 2
II + � 2

�II(q 2
II � � 2)�2


q 2
II + � 2 � �

�
�IIqII�1

� �.

�II(q 2
II � � 2)


p 2
II + � 2

�
2�IIqII�

2


q 2
II + � 2 � �

0

(3.19)
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Substituting the relevant matrices into Eqs. (2.39) and
(2.48) we obtain the reflection coefficient matrices R+,
R�, and R*� respectively.

R+ = [R+
ij ], (3.20)

R+
11 = R+

22 = [(q 2
I � � 2)2� 4pIqI�

2]/[(q 2
I � � 2)2 + 4pIqI�

2],

R+
12 = [4qI� (q 2

I � � 2)(p 2
I + � 2)1/2]/{(q 2

I + � 2)1/2[(q 2
I � � 2)2

+ 4pIqI�
2]},

R+
21 = �[4pI� (q 2

I � � 2)(q 2
I + � 2)1/2]/{(p 2

I + � 2)1/2[(q 2
I � � 2)2

+ 4pIqI�
2]},

R+
33 = �1,

R+
13 = R+

23 = R+
31 = R+

32 = 0,

R� = [R+
ij ], (3.21)

R�
11 = [��+

1�
�
2 + ��

3 �+
4]/�II,

R�
12 = [��+

1�
�
4 + �+

4�
�
1 ]/�II,

R�
21 = [�+

3�
�
2 + �+

2�
�
3 ]/�II,

R�
22 = [�+

3�
�
4 � �+

2�
�
1 ]/�II,

R�
33 = (�IqI � �IIqII)/(�IqI + �IIqII),

R�
13 = R�

23 = R�
31 = R�

32 = 0,

where

��
1 = {�2�1q1 + �II[q2(q 2

2 + � 2)

� q1(2p2q2 + � 2 � q 2
2 )]/(p2q2 + � 2)}/(q 2

1 + � 2)1/2,

��
2 = {�2�1p1 + �II[�p2(q 2

2 + � 2)

� p1(2p2q2 + � 2 � q 2
2 )]/(p2q2 + � 2)}/(p 2

1 + � 2)1/2,

��
3 = {�I(q 2

1 � � 2) + �II [(2p2q2 + � 2 � q 2
2 )

� p1q2(q 2
2 + 1)]/(p2q2 + � 2)}/(p 2

1 + � 2)1/2,

��
4 = {�I(q 2

1 � � 2) + �II [(�p2q1 � 1)(q 2
2 + 1)

+ (2p2q2 + 2� � q 2
2 )]/(p2q2 + � 2)}/(q 2

2 + � 2)1/2,

�II = �+
3�

+
4 � �+

1�
+
2,

and

R *� = [R *�
ij ], (3.22)

R *�
11 = [�� *+

1 � *�
2 + � *�

3 � *+
4 ]/� *

II,

R *�
12 = (�� *+

1 � *�
4 + � *+

4 � *�
1 )/� *

II,

R *�
21 = (� *+

3 � *�
2 + � *+

2 � *�
3 )/� *

II,

R *�
22 = [� *+

3 � *�
4 � � *+

2 � *�
1 ]/� *

II,

R *�
33 = (�IqI � �IIqII)/(�IqI + �IIqII),

R *�
13 = R *�

23 = R *�
31 = R *�

32 = 0,

where

� *�
1 = ��2�1q1 +

�2[(q 2
2 � 1)2 + 4p2q2]
p2(q 2

2 + 1) �/(q 2
1 + 1)1/2,

� *�
2 = �2p1�1/(p 2

1 + 1)1/2,

� *�
3 = ��1(q 2

1 � 1) �
�2p1[(q 2

2 �1)2 +4p2q2]
p2(q 2

2 +1) �/(p 2
1 + 1)1/2,

� *�
4 = �2

4q2(p2 � q2)
p2(q 2

2 + 1)
+

�2�
2

p2
.

In what follows let us first consider the interface con-
dition for case 1, i.e., the welded interface. In the case of
isotropic materials the inverse transform Eq. (2.43)
takes the following form:

(G�)m� = ��
k=1

(�1)k[1 + � �
k (H (z � x3) � 1)]

1
4�2

�
g=1,2,3
j=1,2,3

�
|	|=1
�=0

(U�)m
j R�( j , g , k )[(U (�1)k

)T]g
� (D (�1)k

)g
g

��(�,	 )
�

ds , (3.29)

where j and g take 1, 2, and 3 and respectively represent
the type of the final trip and the initial trip of the ray
path to be a P ray, SV ray or SH ray in the layer, and

��(�, 	 ) = ��t + 	� x� � 2hk�
1 pI � 2hk�

2 qI, (3.30)

where k�
1 and k�

2 are the numbers of times the layer is
traversed by a P ray and S ray, respectively. They may
take fractional values when the source or the detector is
not on the top surface or the interface. Also,

(D�)�
k = �(2�I� bk )�1� �

k , (3.31)
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where

b1 = a 2
I pI, b2 = b3 = c 2

I qI. (3.32)

R� ( j , g , k ) represents the sum of the products of all the
reflection coefficients produced by the rays which travel
from the source to the observation point (detector) and
touch the top surface and the bottom surface of the layer.
These rays have the same final trip j and the same initial
trip g as well as the same total number of layer traverses
k of the layer as shown in Fig. 2. I.e., they have the same
arrival time. The concrete expression of R�( j , g , k ) will
be discussed in the next section.

Fig. 2. A typical ray path within the layer; p and s respectively
represent the sections traveled with p wave speed and s wave speed.
R ps, Rpp, etc., respectively, represent the reflection coefficients of the
top surface and the lower surface of the layer; the superscripts or
subscripts represent the wave mode before and after reflection.

Similarly, we have

(G+)m� = ��
k=1

(�1)k{1 + � �
k [H (x3 � z ) � 1]}

1
4�2

�
g=1,2,3
j=1,2,3

�
|	|=1
�=0

(U+)m
j R+( j , g , k )[(U (�1)k+1

)T]g
� (D (�1)k+1

)g
g

�+(�,	 )
�

ds ,

(3.33)

where

�+(�, 	 ) = ��t + 	� x� � 2hk+
1pI � 2hk+

2qI, (3.34)

(D+)�
k = �(2�I�bk )�1� �

k . (3.35)

The meanings of the various quantities in Eqs. (3.33)-
(3.35) are the same as before or are similar to that of the
quantities in Eqs. (3.29)-(3.32).

Using

� (�, 	 ) = 0, (3.36)

then Eqs. (3.30) and (3.34) can be written as

 ��

 � �
�=0

=
1
���	� x� �

2hk�
1

pI
�

2hk�
2

qI
�. (3.37)

5.1 Detector on the Top Surface

Usually, the detector (observation point) is put on the
top surface of the layer; then Eqs. (3.29) and (3.33) can
be further combined. If the detector was considered to
be located an infinitesimal amount below the upper sur-
face, we should have to take into account at almost the
same instant the wave going upward before reflection
and the reflected wave going downward which come
from the same ray and have almost the same phase
function. Substituting into Eqs. (3.29) and (3.33) with
k = n + 1 and k = n + 2, respectively, and defining

� = U+ � U�R+, (3.38)

and substituting the previous relevant expressions into
Eq. (3.38) we obtain

� = [�ij ]. (3.39)

Here

�11 = [	14pIqI(q 2
I + 1)]/[p 2

I + 1]1/2�I,

�12 = [�	12qI(q 2
I � 1)(q 2

I + 1)1/2]/�I,

�13 = �2	2,

�21 = [	24pIqI(q 2
I + 1)]/[p 2

I + 1]1/2�I,

�22 = [�	22qI(q 2
I � 1)(q 2

I + 1)1/2]/�I,

�23 = 2	1,

�31 = [�2pI(q 2
I � 1)(q 2

I + 1)]/[p 2
I + 1]1/2�I,

�32 = [�4pIqI(q 2
I + 1)1/2]/�I,

�33 = 0,

�I = (q 2
I � 1)2 + 4pIqI.

Then Eqs. (3.29) and (3.33) can be combined and writ-
ten as one formula:

Gm� = ��
n=0

�
g=1,2,3
j=1,2,3

�
|	|=1
�=0

(�1)n�m
j R ( j , g , n )(U (�1)n

)�
g D� (k1, k2)P (g )ds , (3.40)

where

� = ��y + d � k1pI � k2qI, (3.41)
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� = cIt /2h , y = � /cI �� = x� /2h , d = ��	� ,

pI = (� 2
1y 2 � 1)1/2, qI = (y 2 � 1)1/2, ς = z /2h ,

�1 = cI/aI, k� = n� + � g
��1

2
� ς�, � = 1,2.

(3.42)

D� (k1, k2) =
1

16�2�I h�d +
k1

pI
+

k2

qI
� , (3.43)

P (g ) =
1
bg

. (3.44)

5.2 Source and Detector on the Top Surface

Similarly, when the source is also located on the top
surface of the layer then Eq. (3.40) may be written as

Gm� = ��
n=0

�
g=1,2,3
j=1,2,3

�
|	|=1
�=0

(�1)n�m
j R ( j , g , n )(� )l

g D� (k1, k2)P (g )ds , (3.45)

where

� = ��y + d � k1pI � k2qI. (3.46)

(� )l
g is a component of the following matrix,

� = R+(U+)T � (U�)T. (3.47)

Obviously, substituting the corresponding quantities
with “*” into Eqs. (3.29), (3.33), (3.40), and (3.45) gives
the formulas corresponding to case 2, i.e., the liquid
coupled interface.

If we are only interested in the early time or short
time arrival of the signal received by the detector, only
the finite terms of all the previous integrals need be
computed, because the reflected rays with more reflec-
tions do not have enough time to arrive at the detector.

Following Ref. [3], we introduce the following trans-
form

	1 = cos� = d /x ,
	2 = sin� = �(x 2 � d 2)1/2/x (3.48)
ds = d�
y (� ) = y (�� )

where x = |x | and � is the angle measured around |	 | = 1
from the direction of the vector x . Note that if y is a root
of

�� y + d � k1i (1 � � 2
1y 2)1/2 � k2i(1 � y 2)1/2 = 0, (3.49)

for a given value of d , then �y will be a root of the
following equation when d is replaced by �d :

� y � d � k1i (1 � � 2
1y 2)1/2 � k2i(1 � y 2)1/2 = 0. (3.50)

Thus, if d and y form a solution to Eq. (3.49) or (3.50),
then d̃, and ỹ (they are the complex conjugates of d , y )
are solutions to Eqs. (3.50) or (3.49), while �d̃, and �ỹ
are solutions to Eqs. (3.49) or (3.50). When all the
branch cuts for the square root functions in the above
equations were taken along the real axis between each
pair of branch points, using the above relations Eqs.
(3.48)-(3.50) and, finally, the alternate form � = 
 i for
the integration locus, then every term of the integrals
Eqs. (3.40) and (3.45) can be simplified to the form

2�x�i0

�x�i0

I [y (d ), d ]
dd

(x 2 � d 2)1/2 , (3.51)

where the integrand I [y (d ), d ] represents the integrand
of each term, including all the factors of Eq. (3.40) or
(3.45). The denominator (x 2 � d 2)1/2 and the constant
factor 2 are introduced by the variable transform Eq.
(3.48) and the change of the integration path. All the
singularities of the integrand of Eq. (3.51) are located in
the upper half or on the real axis of the d -plane. For a
detailed derivation of Eq. (3.51), refer to Ref. [3].

6. Automatic Generation of Ray Paths
and of Corresponding Products of
Reflection Coefficients

In general, there are many rays which arrive at the
detector at the same time owing to the multiple reflec-
tion and the mode conversion of the incident P ray or SV
ray emitted from the force source in the layer, and there-
fore it is not necessary to separately compute each term
in the integrals mentioned above. The question of how
many rays will arrive at the detector at the same time for
a given configuration is a problem of combinatorics.
Although explicit formulae for summing up the rays
with the same arrival time to form a single integral can
be derived for the case of a plate because the reflection
coefficients at the top surface and bottom surface are the
same [3,12], similar formulae are not easily derived for
the present case of a layer on a substrate. Even though
these formulae can be obtained, the actual program
would also be rather complicated to carry out for a
summation with reflection coefficients at the top surface
which are different from those at the lower surface. In
the following we will give a special counting scheme for
this problem. First, let us change the notation in Fig. 2
and we obtain Fig. 3. Notation “1” and “0” in Fig. 3
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Fig. 3. A typical ray path within the layer; p and s respectively are
replaced by 0 and 1; R ps, etc., by R (0,1,2), etc.

respectively corresponds to notation “s” and “p” in Fig.
2. As a result it is not difficult to understand the mean-
ing of R(0,1,1), R(1,1,2), etc. The first argument de-
notes the type of incident ray while the second one the
reflected ray. The third arguments, “1” and “2”, respec-
tively, represent the lower surface and the top surface of
the layer. Obviously, the configuration of the rays in Fig.
3 may be expressed in a sequence consisting of “0” and
“1” as shown in Fig. 4. On the other hand, the sequence
in Fig. 4 may also be considered as a binary notation of
some integer.

Fig. 4. An example of a binary sequence, that uniquely characterizes
the ray path in Fig. 3.

To find how many rays travel through the thickness of
the layer three times with p-wave speed and three times
with s-wave speed, therefore, is the same problem as to
find how many different six-bit binary integers can be
constructed by three 1’s and three 0’s. Using a bit-test
program it is easy to get the count and find all those
binary numbers that correspond to all the ray paths with
the proper p-wave and s-wave sequences. An outline of
the procedures for assembling the proper sequence of
the reflection coefficients for each ray path is given in
the following for the case of the source and the detector
located on the top surface of the layer.

1. For given k1 and k2, the number of layer traverses
with p-wave speed and s-wave speed respectively, there
is in general more than one ray path which will have the
same arrival time. But each ray may have a different
reflection sequence. From Figs. 3 and 4, the sequence
for each ray path has a corresponding N-bit binary num-
ber representation of k1 1’s and k2 0’s; N = k1 + k2.

2. Using the bit-test program, we can determine IP,
the number of distinct binary sequence with k1 1’s and
k2 0’s, store all such N -bit binary numbers in an array,
IA, of dimension IP. Each binary number will have k1 1’s
and k2 0’s, and they are all different.

3. For each binary number in IA we can construct a
product of the reflection coefficients according to Fig.
3.

4. Summing all the products thus obtained gives all
the rays which arrive at the detector at the same time.

The procedure outlined above is rather efficient in
terms of computation speed as long as N is limited to a
small number, say less than 16. The results in the case
of a plate without the lower half space have been
checked against the results computed using explicit for-
mulae previously derived [12]. These same formulae for
a plate cannot be used for the case of a layer on a
half-space.

7. Singularities and Wave Front Arrivals

The integrand of Eqs. (3.40) or (3.45) may contain
singularities, and they can be divided into three cate-
gories that respectively correspond to three different
types of wave front arrivals: 1) The body waves relevant
to the regular reflected rays which are determined from
the singularities of � /y = 0, 2) The interface waves,
including Rayleigh surface waves, Stoneley interface
waves, and the other possible leaky waves, which are
determined from the singularities of �I = 0 or �II = 0 in
the denominators of the reflection coefficients, and 3)
The head waves determined from the singularities of the
branch points of the square root functions.

Following the analysis in Ref. [3] we will show that
all the above mentioned singularities of the integrands in
the y -plane will be located in the upper half or on the
real axis of the y -plane and their mapping onto the
d -plane, which is determined from Eq. (3.48), will lo-
cate them in the upper half or on the real axis of the
d -plane. So the integration path will never touch the
singularities of the d -plane when we use formula (3.51)
to compute the Green’s functions and choose the inte-
gration path slightly below the real axis. This is indeed
a main advantage of the Willis method.

Let us first consider the head wave arrivals which are
related to the singularities of the branch points.

8. Head Waves

Case 1. Welded interface.

In this case we have the following four square root
functions:

pI = (� 2
1y 2 � 1)1/2, qI = (� 2

2y 2 � 1)1/2,
(4.1)

pII = (� 2
3y 2 � 1)1/2, qII = (� 2

4y 2 � 1)1/2,

where
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�1 = cI/aI, �2 = 1, �3 = cI/aII, �4 = cI/cII. (4.2)

Their branch points are respectively

y1 = ���1
1 , y2 = �1, y3 = ���1

3 , y4 = ���1
4 . (4.3)

For convenience of discussion, without losing gener-
ality we assume the source and detector are located on
the top surface of the layer and

aII > cII > aI > cI. (4.4)

Then from Eq. (4.2) we have

�3 < �4 < �1 < 1. (4.5)

The relation between y and d satisfies the equation

d = �y + k1i(1 � � 2
1y 2)1/2 + k2i(1 � y 2)1/2, (4.6)

where

� = tc1/2h , d = x�	� /2h . (4.7)

A simple analysis of Eq. (4.6) shows that when all the
branch cuts were taken on the real axis of the y -plane
between each pair of branch points, the mapping of the
branch cuts in the d -plane will be located in the upper
half and on the real axis of the d -plane.

The following gives some examples of head wave
arrivals corresponding to the branch points.

1. The head wave arrivals corresponding to branch
point y1.

From Eq. (4.3) we have

y1 = 1/�1 = aI/cI, (4.8)

and

y = csc� , (4.9)

where � is the incident angle. Substituting Eq. (4.9) into
Eq. (4.8) and writing � as ��1 we obtain

sin��1 = cI/aI. (4.10)

Equation (4.10) is the critical condition satisfied by the
critical angle ��1 which leads to the generation of one
type of head wave. The head waves of this type is named
SP*S head waves. Here S and P respectively denote an
SV ray and P ray in the layer. For a detailed physical
mechanisms of the generation of head waves, refer to
Refs. [6] and [7].

Substituting Eq. (4.8) into Eq. (4.6) and letting k1 = 0
we obtain the normalized arrival time of the SP*S head
waves,

� = d
cI

aI
+ k2

cI

aI
	�aI

cI
�2

� 1�1/2

. (4.11)

For example, when k2 = 2 it is just the arrival time of the
SP*S head wave, where SP*S also represents the propa-
gation path of the head wave ray. It consists of three
sections, the first section of the notation, S, represents a
critically incident S ray in the layer, the second, P*,
represents a P ray propagating along the interface but on
the side of the layer, and the final S is a critically
reflected S ray in the layer. Later on, the lower case letter
p or s with a star will represent a P ray or S ray propa-
gating along the interface on the side of the half-space.

2. The wave arrival corresponding to branch point y2.
From Eq. (4.3) we have

y2 = 1. (4.12)

The corresponding critical angle satisfies

sin��2 = 1, or ��2 = �/2; (4.13)

this condition seems as if the S ray emitted from the
source propagates along the top surface of the layer. We
denote this ray by S*. It is possible only if k1 = 0 and
k2 = 0. Letting y2 = 1 in Eq. (4.6), we obtain the normal-
ized arrival time of this ray

� = d . (4.14)

3. The head wave arrivals corresponding to branch
point y3.

From Eq. (4.3) we have

y3 = aII/cI. (4.15)

The corresponding critical angle is

��3 = sin�1(cI/aII). (4.16)

In this case we may have two kinds of head waves that
are excited by the same critically incident S ray but have
different critically reflected S and P rays. With k1 = 0
and using Eq. (4.15) in Eq. (4.6) we obtain the normal-
ized arrival time of one kind of head wave

� = d
cI

aII
+ k2

cI

aII
	�aII

cI
�2

� 1�1/2

. (4.17)
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When k2 = 2 we obtain the arrival time of the Sp*S head
wave.

Using Eq. (4.15) in Eq. (4.6) we obtain the normal-
ized arrival time of the other kind of head wave

� = d
cI

aII
+ k1

cI

aII
	�aII

aI
�2

� 1�1/2

+ k2
cI

aII
	�aII

cI
�2

� 1�1/2

.

(4.18)

When k1 = 1 and k2 = 1, it is the arrival time of the Sp*P
head wave.

4. The head wave arrivals corresponding to branch
point y4.

From Eq. (4.3) we have

y4 = cII/cI. (4.19)

The corresponding critical angle is

��4 = sin�1(cI/cII). (4.20)

In this case we also have two kinds of head waves. With
k1 = 0 and using Eq. (4.19) in Eq. (4.6) we obtain the
normalized arrival time of one kind of head wave

� = d
cI

aII
+ k2

cI

cII
	�cII

cI
�2

� 1�1/2

. (4.21)

When k2 = 2 it is the arrival time of the Ss*S head wave.
Using Eq. (4.19) in Eq. (4.6), we obtain the normal-

ized arrival time of the other kind of head wave

� = d
cI

cII
+ k1

cI

cII
	�cII

aI
�2

� 1�1/2

+ k2
cI

cII
	�cII

cI
�2

� 1�1/2

.

(4.22)

When k1 = 1 and k2 = 1, it is the arrival time of the Ss*P
head wave.

It may be seen that the branch points y1, y3, and y4

correspond to the arrivals of various head wave rays,
while the branch point y2 seems to correspond to the
arrival of the S ray propagating along the top surface of
the layer. These head waves all are excited by the S ray
emitted from the source under the conditions of Eq.
(4.4). A picture of the wave fronts of the head waves in
the layer generated by reflection and refraction of a
spherical P wave and a spherical S wave impinging on
the interface is shown in Fig. 5.

In order to describe the arrivals of various head wave
rays and the P ray propagating along the top surface of
the layer excited by the P ray emitted from the source,
we need to change the form of the relations mentioned
above. We write

Fig. 5. Schematic representation of the head waves in the layer gener-
ated by reflection and refraction of a spherical P wave and a spherical
S wave impinging on the interface.

y =
�
cI

=
aI�
aIcI

=
aI�
cIaI

=
aI

cI
yp, (4.23)

where

yp = � /aI. (4.24)

Substituting Eq. (4.23) into Eq. (4.1) gives

pI = (� 2
1 y 2

p � 1)1/2, qI = (� 2
2 y 2

p � 1)1/2,
(4.25)

pII = (� 2
3 y 2

p � 1)1/2, qII = (� 2
4 y 2

p � 1)1/2,

where

�1 = 1, �2 = aI/cI, �3 = aI/aII, �4 = aI/cII. (4.26)

Substituting Eq. (4.23) into Eq. (4.6) we obtain

d = �
aI

cI
yp + k1i (1 � y 2

p )1/2 + k2i	1 � �aI

cI
yp�2�1/2

. (4.27)

Obviously, the transform of Eq. (4.23) maps the orig-
inal y -plane onto the yp-plane, whereas the original
branch points of the y -plane become those of the yp-
plane as follows:

yp1 = �1, yp2 = ���1
2 , yp3 = ���1

3 , yp4 = ���1
4 ,

(4.28)

Similarly, we may discuss the arrivals corresponding to
the branch points of Eq. (4.28).

5. The head wave arrivals corresponding to the SH
ray.

Since the SH rays do not produce mode conversion
and their speed is equal to that of the SV rays, the
arrivals of the head waves excited by the incident SH
rays emitted from the source are the same as those of the
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Ss*S head waves. These head waves may be called the
Hh*H head waves.

Case 2. Liquid coupled interface.

In this case the number and the distribution of the
branch points are the same as those in the case of the
welded interface. The arrival time of various head waves
and surface P and S rays are the same as those of the
welded interface. (The polarities and amplitudes have
important diagnostic differences; see Computed Results
and Discussion.)

9. Interface Waves

The interface waves include the Stoneley waves and
the leaky waves which propagate along the interface of
two different solid media [8]. When one of the media is
vacuum we obtain the Rayleigh waves propagating along
the free surface of the solid. The Stoneley waves do not
attenuate and the leaky waves attenuate when propagat-
ing along the interface. Unlike the Rayleigh waves, the
Stoneley waves can exist only if some parameters of the
media satisfy certain conditions [9]. The singularities
corresponding to the Stoneley waves come from the real
roots of the so called Stoneley equation, i.e., �II = 0 on
the top Riemman sheet of the y -plane, while the singu-
larities corresponding to the leaky waves come from the
complex roots of the Stoneley equation on the other
Riemman sheets of the y -plane and therefore have some
attenuation [10].

Suppose the source and the detector are located on the
top surface; in this case it can be shown from Eq. (3.49)
that the mapping of the real root singularities corre-
sponding to the Stoneley waves onto the d -plane will
locate them in the upper half of the d -plane, while the
mapping of the complex root singularities correspond-
ing to the leaky waves onto the d -plane will never occur
on the top Riemman sheet of the d -plane. Thus only the
roots of the Rayleigh equation �I = 0 will be considered.
Letting the denominator of the reflection coefficients of
the top surface be equal to zero, we obtain the following
Rayleigh equation:

(q 2
1 � 1)2 + 4pIqI = 0. (4.29)

Using the principle of the argument, it can be proved
that Eq. (4.29) has only two real roots, +yR and �yR.
Obviously, only the positive real root is of interest. The
speed of the Rayleigh waves is less than that of the S
waves, and so yR < 1.

Substituting yR into Eq. (4.6) and letting k1 = 0 and
k2 = 0, because the source and the detector are located

on the top surface, we have

d = � yR. (4.30)

Since � and yR are real numbers, the d corresponding to
the singularity yR should be located on the real axis of
the d -plane. The arrival time of the Rayleigh waves is
determined from Eq. (4.30) if d and yR are known.

10. Regular Reflected Rays

Analysis shows that the singularities of � /y = 0
which relate to the regular reflected rays are located on
the real axis of the y -plane and so the mapping of these
singularities onto the d -plane will locate them on the
real axis of the d -plane from Eq. (3.49). It is not diffi-
cult to understand this consequence if we note that
y = csc� , where � is the incident angle of the ray, and d
is the wave front distance satisfying Snell’s law. When
d , �1, k1, and k2 are given, we have a group of specified
rays that have the same arrival time � satisfying Eq. (4.6)
and the following equation:

d =
k1

(� 2
1 y 2 � 1)1/2 +

k2

(y 2 � 1)1/2 . (4.31)

Equation (4.31) may be obtained using Snell’s law. Ob-
viously, we must first know the value of y in order to get
the arrival time � . It is seen from Eqs. (4.6) and (4.31)
that this is a problem of solving a nonlinear algebraic
equation in y . Following Ref. [12], the solution for y is
obtained using a simple, intuitive, iterative technique.
The arrival time � is determined by substituting the
solution obtained into Eq. (4.6).

11. Integration Technique and
Computation Procedures

The previous analysis shows that when we use Eq.
(3.51) and choose the path of integration below the real
axis of the d -plane, it will not touch the singularities of
the integrand, which include Rayleigh poles and all the
branch points of the square root functions. When all the
branch cuts are taken along the real axis of the y -plane,
then their mapping in the d -plane will locate them in the
upper half-plane and on the real axis. This is indeed a
main advantage of the Willis method.

The actual procedure for numerically computing the
Green’s tensor can be summarized as follows:

1. For given material properties and test configuration
represented by x , the distance between source and detec-
tor, a time of arrival table is computed first. The arrivals
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include all the regular reflected rays and all possible
head waves and Rayleigh wave; each has an associated
pair of number k1 and k2, denoting the group of the ray
paths. The arrivals are sorted according to successive
time sequences.

2. To compute a particular component of the Green’s
tensor for a specific time, t , the number of possible
arrivals, N , can be determined by a comparison with the
time of arrival table computed in step 1. N is also the
number of terms in Eq. (3.45) that need to be computed;
each term consists of one definite integral.

3. For each integral to be numerically computed, the
integrand consists of IP terms and each is a product of
a unique sequence of reflection coefficients and some
other factors. Both IP and the sequence series are com-
puted by calling a bit test program as explained in Sec.
6.

4. The numerical integration is done by providing a
function that computes the integrand for a given integra-
tion variable, d , along with the integration limits. The
function is computed first by solving the equation � = 0
for y for a given d , then computing the IP terms one at
a time and summing; each term has a factor which
corresponds to the product of all the sequences of re-
flection coefficients mapped by a binary number. A
numerical integration subroutine is applied which han-
dles integrands with removable singularities particularly
well and also provides error estimates.

5. The current program was tested by considering the
case when the lower half-space is a vacuum; i.e., the
case when the structure is a plate. Results obtained are
identical to the results obtained by the program to com-
pute the Green’s tensor of a plate developed previously
[12] which had also been checked experimentally.

12. Computed Results and Discussion

A FORTRAN program has been developed to numer-
ically compute the Green’s tensor for a layer on a half-
space with three different bonding conditions between
the layer and the half-space. The program is written in
such a way that for given isotropic material parameters,
maximum observation time, subscript of the component
of the Green’s tensor, number of sampling points, and
distance between the source and detector, the program
will compute the displacement at each sampling time.
Furthermore, the arrivals of various rays are also com-
puted and identified. The current limitation of the pro-
gram is that the positions of the source and detector must
be located on the top surface of the layer. However, the
program will be modified to be applicable to the case of
the source and detector located at arbitrary positions in
the layer.

Figures 6-27 show the computed results of the com-
ponents of the Green’s tensor and their spatial deriva-
tives for a plexiglass layer on a glass substrate. They
were carried out on an IBM compatible personal com-
puter. The abscissa coordinate, time, is normalized by
the time required for a shear wave to vertically travel the
thickness of the layer. The solid curves are the results for
a welded interface condition, while the dashed curves
are for a liquid coupled interface condition. The sub-
scripts ij (11, 12, 13, ..etc.) or ijk (111...etc.) indicate the
response in a specified coordinate direction, i , of a point
detector located on the top surface of the layer to a point
force with step function time dependence exerted on the
top surface in a specified coordinate direction, j . The
index k denotes the specific spatial derivative direction.
Physically, the spatial derivative function Gij , k can be
considered as the displacement in the i -direction due to
a differentiated force which is equivalent to a couple or
a dipole. The distance between the source and detector
is three times the thickness of the layer (except for Figs.
7 and 8) and is chosen in such a way that the very large
Rayleigh wave arrivals are avoided within the given ob-
servation time, and therefore the details of the early time
arrivals can be examined. The other reason for choosing
this distance is to provide a basis of comparison for our
experiments which we have recently conducted [15]
with a geometry that is convenient to arrange and carry
out. It is seen from these figures that the differences in
the results with different interface conditions are very
significant. The responses for a delta function time de-
pendence can be obtained by numerical differentiation
of the responses mentioned above. The results for differ-
ent distances are shown in Figs. 6-8. If we compare the
early time arrivals in Fig. 6 (x = 3) and Fig. 7 (x = 6),
they are very different only because of the change of the
distance between the source and detector. This occurs
because when the distance increases, more head waves
arrive, and different arrivals change their order of occur-
rence. The Rayleigh wave arrivals with welded and liq-
uid coupled interface conditions can be clearly seen
from Fig. 8 and they are coincident. The early time
arrivals and their differences between the two different
interface conditions are totally masked by the amplitude
of the Rayleigh wave arrivals. Little information about
the interface can be derived.

Determination of the Green’s function for a structural
configuration results in a method for determining the
response of the structure to a temporally varying and
spatially distributed input loading. The motion of a point
on the structure can be computed due to, for example, a
transient contact input force. The transient waveform
input is the force that would be produced by a point
source transducer. For an input waveform of interest, the
motional response is calculated by a point-by-point
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Fig. 6. Green’s function G33. X = 3. (A) The dashed curve is the result for a liquid coupled
interface. (B) The solid curve is the result for a welded interface.

Fig. 7. Green’s function G33. X = 6. (A) The dashed curve is the result for a liquid coupled
interface. (B) The solid curve is the result for a welded interface.
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Fig. 8. Green’s function G33. X = 1.5. (A) The dashed curve is the result for a liquid coupled
interface. (B) The solid curve is the result for a welded interface.

Fig. 9. Green’s function G22. X = 3. (A) The dashed curve is the result for a liquid coupled
interface. (B) The solid curve is the result for a welded interface.
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Fig. 10. Green’s function G11. X = 3. (A) The dashed curve is the result for a liquid coupled
interface. (B) The solid curve is the result for a welded interface.

Fig. 11. Green’s function G13. X = 3. (A) The dashed curve is the result for a liquid coupled
interface. (B) The solid curve is the result for a welded interface.
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Fig. 12. Green’s function G31. X = 3. (A) The dashed curve is the result for a liquid coupled
interface. (B) The solid curve is the result for a welded interface.

Fig. 13. The spatial derivative of the Green’s function G331. X = 3. (A) The dashed curve is the
result for a liquid coupled interface. (B) The solid curve is the result for a welded interface.
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Fig. 14. The spatial derivative of the Green’s function G221. X = 3. (A) The dashed curve is the
result for a liquid coupled interface. (B) The solid curve is the result for a welded interface.

Fig. 15. The spatial derivative of the Green’s function G111. X = 3. (A) The dashed curve is the
result for a liquid coupled interface. (B) The solid curve is the result for a welded interface.

465



Volume 107, Number 5, September–October 2002
Journal of Research of the National Institute of Standards and Technology

Fig. 16. The spatial derivative of the Green’s function G131. X = 3. (A) The dashed curve is the
result for a liquid coupled interface. (B) The solid curve is the result for a welded interface.

Fig. 17. The spatial derivative of the Green’s function G311. X = 3. (A) The dashed curve is the
result for a liquid coupled interface. (B) The solid curve is the result for a welded interface.

466



Volume 107, Number 5, September–October 2002
Journal of Research of the National Institute of Standards and Technology

Fig. 18. The spatial derivative of the Green’s function G332. X = 3. (A) The dashed curve is
the result for a liquid coupled interface. (B) The solid curve is the result for a welded
interface.

Fig. 19. The spatial derivative of the Green’s function G222. X = 3. (A) The dashed curve is
the result for a liquid coupled interface. (B) The solid curve is the result for a welded
interface.
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Fig. 20. The spatial derivative of the Green’s function G112. X = 3. (A) The dashed curve is the
result for a liquid coupled interface. (B) The solid curve is the result for a welded interface.

Fig. 21. The spatial derivative of the Green’s function G132. X = 3. (A) The dashed curve is the
result for a liquid coupled interface. (B) The solid curve is the result for a welded interface.
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Fig. 22. The spatial derivative of the Green’s function G312. X = 3. (A) The dashed curve is the
result for a liquid coupled interface. (B) The solid curve is the result for a welded interface.

Fig. 23. The spatial derivative of the Green’s function G333. X = 3. (A) The dashed curve is the
result for a liquid coupled interface. (B) The solid curve is the result for a welded interface.
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Fig. 24. The spatial derivative of the Green’s function G223. X = 3. (A) The dashed curve is the
result for a liquid coupled interface. (B) The solid curve is the result for a welded interface.

Fig. 25. The spatial derivative of the Green’s function G113. X = 3. (A) The dashed curve is the
result for a liquid coupled interface. (B) The solid curve is the result for a welded interface.
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Fig. 26. The spatial derivative of the Green’s function G133. X = 3. (A) The dashed curve is the
result for a liquid coupled interface. (B) The solid curve is the result for a welded interface.

Fig. 27. The spatial derivative of the Green’s function G313. X = 3. (A) The dashed curve is the
result for a liquid coupled interface. (B) The solid curve is the result for a welded interface.
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convolution of the time differential of the source wave-
form with the Green’s function component that repre-
sents the step function response in the motional direction
of interest.

The response of a structure due to a damped sinusoid
input can be easily determined and may be of interest in
analyzing the response to pulses used for probing mate-
rials and structures. The response of a layered structure
interrogated by a pulsed laser beam can also be deter-
mined by convolving an input waveform with the deriva-
tive of the components of the Green’s tensor that repre-
sents a dipole source. By comparing the response in the
case of a vacuum lower half-space with the results of a
welded solid half-space, the behavior of a large debond
can be calculated. The large differences in amplitude
and polarity of the first few head waves and regular
reflected rays are strong indicators that there is no bond.
These results and others will be described in a future
paper. Many other responses of interest for particular
applications, such as nondestructive evaluation, are en-
visioned.

13. Appendix A. The Willis Inversion
Method

This appendix directly quotes from Ref. [3].
Consider the inversion of transforms of the form

f (t , x ) =
1

8�3 �
��0i

���0i

d���d�1d�2�F (� , � )

exp[�i(�� x� � �t + �1�
M
3 + �2�

N
3 )] (A.1)

where F (� ,� ) is a homogeneous function of degree �2.
Each term of the integrand, which represents a general-
ized ray in the text, is analytic for Im (� ) < 0 and the
integration of each term vanishes for t < 0. So f (t , x ),
i.e., the integration of the sum of the integrands should
vanish for t < 0. The functions �M

3 and �N
3 are homoge-

neous of degree 1 in � , �1, and �2; �1�
M

3 and �1�
N

3 have
imaginary parts.

Setting

� = � /|� |, 	� = �� /|� |, (A.2)

where |� | = (� 2
1 + � 2

2 )1/2, gives

f (t , x ) =
1

8�2 lim

➝0

�
��0i

���0i

d� �
|	|=1

ds�F (�,	 )�
�

0

d|� |

exp[�i|� |(��t + 	� x� + �1�
M
3 + �2�

N
3 � i
 )] (A.3)

where �M
3 = �M

3 (�, 	 ). The “convergence factor” e�|�| is

inserted to facilitate evaluation of the integrals in Eq.
(A.3) by simple quadrature; generalized functions are
continuous with respect to limiting operations of the
type introduced, and the limit 
 → 0 can be taken at any
convenient stage. Evaluating the integral with respect to
|� | gives

f (t , x ) =
1

8�2i
lim

→0

��
|	|

ds �
��0i

���0i

d�� F (�,	 )
��� + 	� x� + �1�

M
3 + �2�

N
3 � i0�. (A.4)

Setting

� = ��t + 	� x� + �1�
M
3 + �2�

N
3 � i
 (A.5)

the integral with respect to � is now evaluated by clos-
ing the contour in the lower half-plane because the inte-
grand has behavior as O (��2) for large � and using
Cauchy’s theorem. This gives

f (t , x ) =
�1
4�2��

|	|=1
�=0

ds
F (�,	 )

�t + �1�
M
3,� + �2�

N
3,�
�

�=0

, (A.6)

where � is now taken as the root in the lower half-plane
of the equation

��t + 	� x� + �1�
M
3 (�,	 ) + �2�

N
3 (�,	 ) = 0i, (A.7)

if there is such a root. If there is more than one root, then
the contribution from each root should be included; if
none, then that term of the integrand is replaced by zero.
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